CIMAT

Examen General de Variable Compleja

Agosto 2022

Cada problema correctamente resuelto vale 10 puntos. Se necesitan 35 puntos para aprobar el examen. Justifica todas tus respuestas.

1. Sea Γ una curva cerrada simple y suave a trozos sobre el plano complejo \mathbb{C} . Demuestra que para cada $n \neq 1$ se cumple

$$\int_{\Gamma} \frac{dw}{(z-w)^n} = 0, \qquad \text{para todo } z \in \mathbb{C} \setminus \Gamma.$$

- 2. Denota por $\Omega \subset \mathbb{C}$ un conjunto no vacío, abierto y conexo. Si f es una función meromorfa en Ω y $f^{-1}(0)$ tiene un punto límite en Ω , demuestra que $f \equiv 0$.
- 3. Denota por \mathbb{D} el disco unitario $\{z \in \mathbb{C} : |z| < 1\}$. Prueba que toda transformación analítica biyectiva de \mathbb{D} en \mathbb{D} es una transformación de Moebius.
- 4. Sea f una función holomorfa y no constante en un abierto U y donde $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\} \subset U$. Demuestra que si |f(z)| = 1 cuando |z| = 1, entonces $\mathbb{D} \subset f(U)$.
- 5. Sea f una función holomorfa definida sobre un conjunto abierto U tal que $f(U) \subset U$. Denota por f^n la n-ésima composición f con sí misma. Demuestra que si existe una subsucesión de funciones en $\{f^n\}_{n=1}^{\infty}$ que converge uniformemente en compactos de U a la función identidad, entonces f es una biyección.