Examen general de teoría de la medida

Maestría en matemáticas básicas, CIMAT

Instrucciones

- El examen tiene una duración de 4 horas.
- Cada problema vale 10 puntos.
- Se recomienda comenzar resolviendo los ejercicios más sencillos.
- Para recibir puntuación es necesario justificar las respuestas.
- 1. Sea (X, \mathcal{M}, μ) un espacio de medida y $\{E_k\}$ una sucesión de conjuntos medibles. Demuestra que

$$\sum_{k=1}^{\infty} \mu(E_k) < \infty \qquad \Rightarrow \qquad \mu\left(\limsup_{k \to \infty} E_k\right) = 0.$$

2. Sea (X, \mathcal{M}, μ) un espacio de medida y $f: [0, \infty] \to \mathbb{R}$ una función \mathcal{M} -medible. Demuestra que la función $\lambda \colon \mathcal{M} \to [0, \infty]$ dada por

$$\lambda(E) = \int_{E} f d\mu,$$

es una medida.

3. Calcule (con demostración) el siguiente límite

$$\lim_{n \to \infty} \int_0^\infty \frac{1 + nx^2}{(1 + x^2)^n} dx.$$

4. Da un ejemplo de una sucesión de funciones medibles que converjan en medida pero no en casi todo punto.

5. Dado un conjunto arbitrario Z y $f\colon Z\to [0,\infty)$ definimos

$$\sum_{z \in Z} f(z) := \sup \left\{ \sum_{z \in F} f(z) \mid F \subseteq X \text{ finito} \right\}.$$

Demuestra que para $f \colon X \times Y \to [0, \infty)$

$$\sum_{X \times Y} f(x, y) = \sum_{y \in Y} \left(\sum_{x \in X} f(x, y) \right) = \sum_{x \in X} \left(\sum_{y \in Y} f(x, y) \right).$$

6. Una función $f: \mathbb{R} \to \mathbb{R}$ se dice aproximadamente continua en $a \in \mathbb{R}$, si para todo $\varepsilon > 0$ se tiene que

$$\lim_{\delta \to 0} \frac{m(\{|f - f(a)| > \varepsilon\} \cap (a - \delta, a + \delta))}{2\delta} = 0.$$

- (a) Demuestra que si f es continua en a, entonces también es aproximadamente continua en a.
- (b) Demuestra que si $f \in L^1(\mathbb{R})$, entonces f es aproximadamente continua en casi todo punto.
- 7. Sea $f \in L^1(\mathbb{R})$. Calcule

$$\lim_{n \to \infty} \int_{\mathbb{R}} \sin(nx) f(x) dx.$$

Pista: Considera el caso $f = \mathbb{1}_{[a,b]}$.

8. Sea $\Omega=\{x\in\mathbb{R}^n\mid 0<|x|<1/2\},\,\alpha,\beta\in\mathbb{R}$ y $f\colon\Omega\to\mathbb{R}$ tal que

$$f(x) = \frac{|\ln|x||^{-\alpha}}{|x|^{\beta}}.$$

Dado $p \geq 1$, calcula todos los valores de α y β para los cuales $f \in L^p(\Omega)$.