Examen general de teoría de la medida

9 de agosto de 2023

Instrucciones

- El examen tiene una duración de 4 horas.
- Cada problema vale 10 puntos.
- Para recibir puntuación es necesario justificar las respuestas.
- 1. Sea \mathcal{C} una clase monótona. Para $F \in \mathcal{C}$, prueba que la familia

$$C(F) = \{ A : A \setminus F, F \setminus A, A \cup F \in C \}$$

es una clase monótona.

2. Sea μ^* una medida exterior en X. Prueba que A es μ^* -medible si, y sólo si

$$\mu^*(E_1 \cup E_2) = \mu^*(E_1) + \mu^*(E_2), \quad E_1 \subset A, E_2 \subset A^c.$$

- 3. ¿Cuál es la medida exterior de Lebesgue de los irracionales en el intervalo [0,1]?
- 4. Supongamos que f_n , g_n , f, $g \in L^1$, $f_n \to f$ y $g_n \to g$ c.t.p. $|f_n| \le g_n$ y $\int g_n \to \int g$. Entonces $\int f_n \to \int f$
- 5. Si $||f_n f||_p \to 0$ donde $p < \infty$, entonces $f_n \to f$ en medida. Por otra parte, si $f_n \to f$ en medida y $|f_n| \le g \in L^p$ para toda n donde $p < \infty$, entonces $||f_n f||_p \to 0$.
- 6. Supongamos μ , ν son medidas finitas en (X, \mathcal{M}) , con $\nu \ll \mu$, y sea $\lambda = \mu + \nu$. Si $f = d\nu/d\lambda$, entonces $0 \le f < 1$ μ -c.t.p. y $d\nu/d\mu = f/(1-f)$.
- 7. Sean $0 = \delta_1 < \delta_2 < \ldots < \delta_n \ldots$ con $\delta_n \nearrow 1$. Sea g_n real y continua con soporte en (δ_n, δ_{n+1}) y $\int_0^1 g_n(t)dt = 1$. Definamos

$$f(x,y) = \sum_{n=1}^{\infty} (g_n(x) - g_{n+1}(x))g_n(y).$$

Prueba que f es continua en $[0,1)\times[0,1)$. ¿Contradice esto al Teorema de Fubini; Justifica tu respuesta.

8. Sea $E = [0,1] \times [0,1]$. Verifica la existencia y la igualdad de las integrales iteradas y la integral doble:

- (a) $f(x,y) = (x^2 y^2)(x^2 + y^2)^{-2}$,
- (b) $f(x,y) = (1-xy)^{-a}$, (a > 0), (c) $f(x,y) = (x-\frac{1}{2})^{-3}$ si $0 < y < |x-\frac{1}{2}|$, f(x,y) = 0 de otra manera.