Examen general de Teoría de la medida

13 de enero de 2022

Exponga sus argumentos con detalle. Tiene 3 horas para resolver el examen. Cada uno de los 7 problemas vale 10 puntos. Para aprobar el examen se necesitan obtener al menos 49 puntos.

Denotaremos por X un conjunto, \mathcal{X} una σ -álgebra de subconjuntos de X y μ una medida. La terna (X, \mathcal{X}, μ) es un espacio de medida. Denotaremos por $\mathcal{M}(X, \mathcal{X}, \mu)$ al conjunto de funciones $X \to \mathbb{R}$ medibles y a $\mathcal{M}^+(X, \mathcal{X}, \mu) \subset \mathcal{M}(X, \mathcal{X}, \mu)$ a las funciones no negativas.

- (1) Sean (X, \mathcal{X}, μ) un espacio de medida y $f: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$. Demuestre que f es medible si y sólo si, $\{x \in X \mid f(x) > \alpha\} \in \mathcal{X}$ para todo α racional.
- (2) Sea $\{\mu_n\}_{n\in\mathbb{N}}$ una sucesión de medidas en (X,\mathcal{X}) . Pruebe que

$$\lambda = \sum_{n=1}^{\infty} 2^{-n} \mu_n$$

es una medida y que, para toda $n \in \mathbb{N}$, la medida $\mu_n \ll \lambda$.

- (3) (a) Enuncie el teorema de la convergencia monótona.
 - (b) Dé un ejemplo que muestre que el teorema de la convergencia monótona no es válido para la integral de Riemann.
- (4) Sean $\{f_n\}$ una sucesión en $L_p(X,\mathcal{X},\mu)$ y $p\geq 1$. Para cada $E\in\mathcal{X}$ definimos

$$\beta_n(E) = \left(\int_E |f_n|^p d\mu \right)^{\frac{1}{p}}.$$

Demuestre que $|\beta_n(E) - \beta_m(E)| \le ||f_n - f_m||_p$.

- (5) Consideremos a $(\mathbb{R}, \mathcal{B}, \lambda)$, los reales con la σ -álgebra de Borel y la medida de Lebesgue. Demuestre que la sucesión de funciones $f_n = n^{-1/p}\chi_{[0,n]}$ converge uniformemente a la función idénticamente 0, pero no converge en $L_p(\mathbb{R}, \mathcal{B}, \lambda)$.
- (6) Sean $A \subset \mathbb{R}$ un conjunto Lebesgue medible y $\epsilon > 0$. Demuestre que existe un conjunto abierto $G_{\epsilon} \supset A$ tal que $\lambda^*(A) \leq \lambda^*(G_{\epsilon}) \leq \lambda^*(A) + \epsilon$. En este problema $\lambda^*(A)$ denota la medida exterior de Lebesgue del conjunto A.

(7) Sean λ, μ medidas σ -finitas en (X, \mathcal{X}) . Si $\lambda \ll \mu$, la medida λ es absolutamente continua respecto de μ . Sea $f = d\lambda/d\mu$ la derivada de Radon-Nikodým. Pruebe que para $g \in \mathcal{M}^+(X, \mathcal{X})$, se cumple que

$$\int g \, d\lambda = \int g \cdot f \, d\mu.$$