Examen General de Topología

Sinodales: Antonio Reiser, José Andrés Rodríguez Migueles, Jesús Rodríguez Viorato

Agosto 2025

Tienes 4 horas para resolver los siguientes problemas. Necesitas resolver al menos 7 correctamente para pasar. Justifica tus respuestas. ¡Éxito!

- 1. Sea X un espacio topológico y R una relación de equivalencia en X. Probar que si X/R es Hausdorff, entonces $R \subseteq X \times X$ es un cerrado.
- 2. Muestre que si un espacio X se retrae por deformación a un punto $x \in X$, entonces para cada vecindad U de x existe una vecindad $V \subset U$ de x tal que la función inclusión $V \subset U$ es nullhomotópica.
- 3. Dado un par (X,A) que satisface la propiedad de extensión de homotopía y una equivalencia homotópica $f:A\to B$, muestre que el mapa natural $X\to B\cup_f X$ es una equivalencia homotópica.
- 4. Para un espacio conexo por trayectorias X, muestre que $\pi_1(X)$ es abelianao si y sólo si todos los homomorfismos de cambio de base β_h solo dependen de los puntos extremos de h.
- 5. Demuestre que $\pi_1(X, x_0) = 0$ para todo punto $x_0 \in X$ si sólo si toda función continua $\mathbb{S}^1 \to X$ es homotópica a una función constante.
- 6. Calcula el grupo fundamental de \mathbb{RP}^n para todo n > 0.
- 7. Sean \tilde{X} e \tilde{Y} dos espacios simplemente conexos que cubre dos espacios X e Y respectivamente, con X e Y arco-conexos y localmente arco-conexos. Muestre que si X e Y son homotópicamente equivalentes, entonces \tilde{X} e \tilde{Y} también lo son.
- 8. Demuestra que si $A \subset X$ es contraible, entonces $H_n(X,A) \cong \tilde{H}_n(X)$ para toda n.
- 9. Calcula los grupos de homología de $M \times \mathbb{S}^1$; el producto de la banda de Möbius con el círculo.
- 10. Demostrar que si M es una n-variedad conexa, entonces $H_n(M, M-x) \cong \mathbb{Z}$.
- 11. Demuestra que no existe una retracción $r:X\to A$ donde X es la banda de Möbius y A su circulo frontera.