Examen General de Topología

Sinodales: Antonio Reiser, José Andrés Rodríguez Migueles, Jesús Rodríguez Viorato

Enero 2025

Tienes 4 horas para resolver los siguientes problemas. Necesitas resolver al menos 7 correctamente para pasar. Justifica tus respuestas. ¡Éxito!

- 1. Decimos que $x, y \in X = \mathbb{C}^2 \{(0,0)\}$ son equivalentes si existe $\lambda \in \mathbb{C}$ tal que $x = \lambda y$. Demuestra que X/\sim es homeomorfo a \mathbb{S}^2 .
- 2. Dado un par (X,A) que satisface la propiedad de extensión de homotopía y una equivalencia homotópica $f:A\to B$, muestre que el mapa natural $X\to B\cup_f X$ es una equivalencia homotópica.
- 3. Sea X un espacio topológico conexo por trayectorias y localmente conexo por trayectorias. Supongamos que $\pi_1(X)$ es un grupo finito. Demostrar que todo mapeo $f: X \to \mathbf{S}^1$ es homotópico a un mapeo constante.
- 4. Sea A un subconjunto finito de bolas abiertas disjuntas en \mathbb{S}^n con n > 1. Considera B el complemento de A en \mathbb{S}^n . Demostrar que \mathbb{S}^n/B es simplemente conexo.
- 5. Dado un espacio X y un subspacio A conexo por trayectorias conteniendo el punto base x_0 , muestre que el morfismo $\pi_1(A, x_0) \to \pi_1(X, x_0)$ inducido por la inclución $A \hookrightarrow X$ es sobreyectivo si y sólo si todo camino en X con extremos en A es homotópico a un camino en A.
- 6. Sean \tilde{X} e \tilde{Y} dos espacios simplemente conexos que cubre dos espacios X e Y respectivamente, con X e Y arco-conexos y localmente arco-conexos. Muestre que si X e Y son homotópicamente equivalentes, entonces \tilde{X} e \tilde{Y} también lo son.
- 7. Demuestra que si $D: A_n \to B_{n+1}$ es una homotopía de cadenas entre los maps de cadenas $f, g: A_n \to B_n$ (es decir $f g = \partial \circ D + D \circ \partial$) entonces f y g inducen la misma homología $f_* = g_*: H_k(A_*) \to H_k(B_*)$.
- 8. Calcular los grupos de homología de $K \times \mathbb{S}^1$; el producto de la botella de Klein con el círculo.
- 9. Demostrar que si M es una n-variedad conexa, entonces $H_n(M, M-x) \cong \mathbb{Z}$.
- 10. Muestre que $\tilde{H}_n(X) = \tilde{H}_{n+1}(SX)$, donde SX denota la suspensión de X.