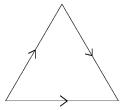
Examen General de Topología

Sinodales: Gabriela Guzmán, Araceli Guzmán, Jesús Rodríguez-Viorato Enero 2024

Tienes 4 horas para resolver los siguientes problemas. Necesitas resolver al menos 7 correctamente para pasar. Justifica tus respuestas. ¡Éxito!

- 1. Demostrar que si Y es compacto, entonces la proyección $\pi_1: X \times Y \to X$ es una función cerrada.
- 2. Demostrar que si $p:M\to N$ es un cubriente con N Hausdorff, entonces M es Hausdorff.
- 3. Si $f: \mathbf{S}^1 \to X$ es un mapeo homotópico a un mapeo constante $ct: \mathbf{S}^1 \to X$. Demostrar que existe una extensión $\tilde{f}: \mathbf{D}^2 \to X$ de f; es decir $\tilde{f}|_{\mathbf{S}^1} = f$.
- 4. Sea X un espacio topológico conexo por trayectorias y localmente conexo por trayectorias. Supongamos que $\pi_1(X)$ es un grupo finito. Demostrar que todo mapeo $f: X \to \mathbf{S}^1$ es homotópico a un mapeo constante.
- 5. Sea A un subconjunto finito de bolas abiertas disjuntas en \mathbf{S}^n con n > 1. Considera B el complemento de A en \mathbf{S}^n . Demostrar que \mathbf{S}^n/B es simplemente conexo.
- 6. Calcular el grupo fundamental de el espacio proyectivo \mathbf{RP}^2 .
- 7. En el contexto de la homología singular, demostrar que toda frontera es un cíclo.
- 8. El $Dunce\ Hat$ es el espacio topológico X que se forma de tomar el 2-simplejo y hacer las identificaciones des sus aristas como se muestra en la figura. Calcular los grupos de homología de X.



9. Demostrar que si $A \subset X$ es contraible, entonces $H_n(X,A) \cong \tilde{H}_n(X)$ para toda n.

10. Demostrar que el disco n-dimensional \mathbf{D}^n no se retrae a $\partial \mathbf{D}^n$.