Fecha: 10/Enero/2022 Semestre: 2021-I

Instrucciones:

Tienes tres horas para contestar al menos 4 de las 7 preguntas. No se permiten celulares, ni tabletas, ni computadoras. Escribe tu respuesta a cada problema en páginas separadas. iÉxito!

Problema 1. Considera el disco $\mathbb{D}=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$ y la relación de equivalencia dada por $(x,y)\sim (1,0)$ para todo $(x,y)\in\partial\mathbb{D}=\{x\in\mathbb{R}^2:|x|=1\}.$

Demuestra que el espacio \mathbb{D}/\sim es homeomorfo a $\mathbb{S}=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2=1\}$

Problema 2. Todo homeomorfismo del disco cerrado \mathbb{D}^2 en sí mismo, manda $\partial \mathbb{D}$ sobre $\partial \mathbb{D}$ y el interior del disco $int(\mathbb{D}^2) = \{x \in \mathbb{R}^2 : |x| < 1\}$ sobre sí mismo.

Problema 3. Sean A y B subconjuntos cerrados de un espacio X. Demuestra que si $A \cup B$ y $A \cap B$ son conexos, entonces A y B son conexos.

Problema 4. Demuestre que si Y es compacto, entonces la proyección $\pi_1: X \times Y \to X$ es una función cerrada.

Problema 5. Demuestra que \mathbb{R}^2 no es homeomorfo \mathbb{R}^n para ninguna $n \neq 2$.

Problema 6. Calcula el grupo fundamental del toro 3-dimensional $S^1 \times S^1 \times S^1$.

Problema 7. Una función cubriente de M sobre N es una función continua $f:M\to N$ suprayectiva tal que para todo punto en $p\in N$ existe una vecindad U_p de p tal que $f^{-1}(U_p)$ se descompone como unión ajena de abiertos $\cup_{\alpha} V_{\alpha}$ tales que $f|_{V_{\alpha}}:V_{\alpha}\to U_p$ es un homeomorfismo.

Demuestra que si $p: M \to N$ es un cubriente con N Hausdorff, entonces M es Hausdorff.