Examen general de EDO, agosto del 2023

Aclaración: cada problema resuelto correctamente vale 10 puntos. Se necesitan 35 puntos para aprobar el examen. Justifica todas tus respuestas.

1. Dado $f: \mathbf{R}^n \to \mathbf{R}^n$ de clase C^1 tal que $|f(x)| \le 1 + |x|^{\alpha}$ consideramos el problema de valores iniciales

$$\begin{cases} x' = f(x), \\ x(0) = 0 \end{cases}$$

Demuestra que si $\alpha \in [0,1]$ entonces la solución x=x(t) está definida para todo $t \in \mathbf{R}$. Da por otro lado un contraejemplo para el cual $\alpha > 1$ y no sea posible encontrar una solución x=x(t) definida para todo $t \in \mathbf{R}$.

2. Sea $f: \mathbf{R} \to \mathbf{R}$ continua y

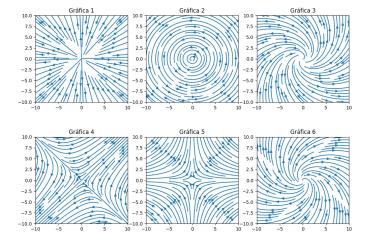
$$u(x) = \int_0^x f(y)\sin(x-y)dy.$$

Calcula la segunda derivada de u y verifica que satisface u'' + u = f.

3. Encontrar la solución general del sistema

$$\left(\begin{array}{c} x^{'} \\ y^{'} \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} t-1 \\ 3t \end{array}\right).$$

4. Presenta una expresión para un posible campo vectorial que genere cada uno de los siguientes flujos en el plano. Justifica tu elección en cada caso.



5. Sean $U \subset \mathbb{R}^2$ un abierto no vacío, $F: U \to \mathbb{R}^2$ un campo vectorial de clase C^1 y γ una trayectoria periódica aislada del campo F. Demuestra que existe una vecindad $V \subset U$ de γ tal que, para todo punto $p \in V$ se cumple $\alpha(p) = \gamma$ o se cumple $\omega(p) = \gamma$.

${\bf Recordatorio:}$

Sea $\varphi: \mathbb{R} \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ un flujo y $x \in \mathbb{R}^2$ un punto dado, decimos que $y \in \mathbb{R}^2$ es un ω -límite de x si existe una sucesión $\{t_n\}_{n \in \mathbb{N}}$ en \mathbb{R} tal que

$$\lim_{n \to \infty} t_n = \infty, \quad \mathbf{y} \quad \lim_{n \to \infty} \varphi(t_n, x) = \mathbf{y},$$

el conjunto de todos los ω -límites de x es denotado por $\omega(x)$.

De manera análoga, y es llamado un α -límite de x si existe una sucesión $\{t_n\}_{n\in\mathbb{N}}$ en \mathbb{R} tal que

$$\lim_{n \to \infty} t_n = -\infty, \quad \mathbf{y} \quad \lim_{n \to \infty} \varphi(t_n, x) = y,$$

el conjunto de todos los α -límites de x es denotado por $\alpha(x)$.