Examen General de Álgebra (Agosto 2025)

Nombre:	
---------	--

<u>Instrucciones</u>: Lea cuidadosamente el examen antes de comenzar a resolverlo. Dispone de 180 minutos. Debe justificar completamente y rigurosamente todas sus respuestas para recibir crédito completo.

- 1. Sea p un número primo. Pruebe que todo grupo de orden p^2 es abeliano.
- 2. Clasifique los grupos de orden 35 salvo isomorfismo.
- 3. Sea A un anillo conmutativo con identidad. Sean $\mathfrak{a}, \mathfrak{p}, \mathfrak{q} \subset A$ ideales tales que \mathfrak{p} y \mathfrak{q} son primos y $\mathfrak{a} \subset \mathfrak{p} \cup \mathfrak{q}$. Muestre que $\mathfrak{a} \subset \mathfrak{p}$ o $\mathfrak{a} \subset \mathfrak{q}$.
- 4. Sea A un anillo conmutativo con identidad. Muestre que si A es noetheriano entonces todo homomorfismo sobreyectivo $\phi \colon A \to A$ es necesariamente un isomorfismo.
- 5. Sea $k \subset K$ una extensión de campos y sea R un subanillo $k \subset R \subset K$.
 - (a) Muestre que si $k \subset K$ es algebraica entonces R es un campo.
 - (b) Si $k \subset K$ no es algebraica, ¿se cumple necesariamente que R es un campo?
- 6. Sea $k \subset K$ una extensión de Galois finita. Suponga que p es un número primo tal que $[K:k]=p^e n$ y p no divide a n. Muestre que para todo $i \in \{0,\ldots,e-1\}$ existe un campo intermedio $k \subset F_i \subset K$ tal que $[F_i:k]=p^i n$.